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Abstract

This paper gives the simple and necessary condition of Fermat Wiles

Theorem with mainly providing one method to analyze natural

numbers and the formula nnn ZYX   logically and geometrically,

which is positioned in combinatorial design theory. The condition

is     EYEYEXEX nn  ,gcd,gcd  in  ,XYn   or

    EYEYEXnEX nn  ,gcd,gcd in  .YnXn 

Provided that E denotes ,ZYXE  n is a prime number equal

to or more than 2, and X, Y, Z are coprime numbers.

1. Introduction

Many people offer a silent prayer as if they did for victims of COVID-19

on this day morning, August 6th in Japan. In many countries, this disaster

seems also man-made, if not, errors committed. To minimize the damage, the

author believes that the answer is not difficult, hoping that not only a few
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people but as many people as possible stand on the first step of the road of

seeking the truth. Most of scholars know that this attitude or principle is the

basis of science too. In my past development of words automated

categorizing software, just obeying the principle like a normal scientist, and

doing research for computer science, foundations of mathematics, reasonable

philosophy, linguistics, etc., my understanding of general thinking method

was sophisticated as below. Then the author was motivated to apply the

method to mathematics, especially for Fermat Wiles Theorem [5].

When we think something, we call the thing by an object. We cannot

think explicitly without an object. If an object is only one, our thought does

not advance, therefore at least two objects are needed. We call some

connection, which is not these objects and breaks each mutual independence

of these objects, by a relation. If no relation exists, also our thought does not

advance. Therefore, to think needs at least two objects and their relation. If

we grasp our thought by the paradigm of objects and relations, we can grasp

features, comparison, decomposition, abstraction, and classification of

objects, or proposition and inference, or set and map, by this paradigm

as well. Namely thinking and understanding mean finding objects and

clarifying mutual relations. Moreover, the essence of an object is only in the

relations between others, and ultimately the entity, which at least we can

recognize rationally, of an object is the relations composed of others1, for

example in mathematics, 11 x and .12 x

At a glance, Cantor succeeded to grasp features and abstract

mathematical objects to sets, but in fact sets are only the basis for describing

the relations between elements or sets. Hilbert put them into the paradigm of

theories. He said “We think of these points, straight lines, and planes as

having certain mutual relations, which we indicate by means of such words

as ‘are situated’, ‘between’, ‘parallel’, ‘congruent’, ‘continuous’, etc. The

complete and exact description of these relations follows as a consequence

1More details about “Relational Logic” which the author thought of is in [4], but only in

Japanese.
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of the axioms of geometry” in [3]. In this way, modern axiomatism is mostly

equal to defining relations expressly, and objects become only sign or mark

of joint or container for relations like pronouns or algebraic symbols.

This idea, which concentrates on the importance of relations, was

also appeared in Descartes. He said “These subjects, although objects are
different, think only a variety of relations, in other words only proportions,

which are found in these subjects”, and also said “we can borrow all the
advantages from geometric analysis and algebra, and all the disadvantages of

either can be corrected by the other one” in [1]. It means that algebraic

geometry can deepen the understanding of both geometric analysis and

algebra by these mutual complementary relations.

From the philosophy above, general thinking method which is centered

on relations, we consider Fermat Wiles Theorem. When we analyze natural

numbers and the formula ,nnn ZYX   we need to find the other objects

which have strong relations with them and support our understanding on

them. Once we find the objects, we just need to concentrate on seeking the

relations between all of them, and repeat this thinking operation for finding

new objects and relations. By this policy for seeking, as the result in

this paper, we see geometric structures positioned in design theory of

combinatorics. “Combinatorial design theory is the study of arranging

elements of a finite set into patterns (subsets, words, arrays) according to

specified rules”, cited from [2].

2. Deformation of Formula by Combinatorics

Theorem 2.1. When nnn ZYX  holds, decomposing each power by

multinomial theorem and subtracting equal terms from both sides, then if we

set ,, EXXZYXE  and ,EYY  the left side nn YX 

remains nE and the right side nZ remains   


 2
0

n
r

rnr
rn YXEC

.rnrn YX   Therefore,
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n YXYXECE (2.0.1)

holds.

Proof. We think general finite set G. nG is that its number of elements

is n. We should note that finite is equivalent to the fact that the set has one-

to-one correspondence with a subset of natural numbers, which has the max

value.

For simple expression, we think n as 1 to n, a subset of natural

numbers, and we take a one-to-one correspondence between nG and .n
With the correspondence, we write the elements of nG as 1ne  to .nen

We also adopt the same rule to X as n. Then we think mappings

,: Xnx GGf  and a set XQ has all xf as its elements. We should note

that xf is what we call a duplicate permutation, or we can also say a

categorized pattern of nG by .XG

We think a coordinate set

  ,0...,,, 2121 nxxxnxxxxS XiXX  

and a mapping XXx SQg : with being determined by   .1 iefx Xxi


Provided that the mark means a number of elements.

xg is surjection. Hence for ,XSs   we think a set  ,1
, sgQ xsX

 and

!!!
!

21
,

X
sX xxx

n
Q


 

holds. This is a coefficient of multinomial theorem, therefore





XSs

XsX
n QQX ,

holds.



A Simple Condition of Fermat Wiles Theorem … 59 

The discussion above can be adapted to Y and Z as well as X. See        

Figure 1. Therefore, if a simply sum set YX QQ +  and ZQ  have one-to-one 

correspondence, nnn
ZYX =+  holds. Oppositely and more importantly, if 

nnn
ZYX =+  holds, because of ∅=YX QQ ∩  and ,XQ  ,YQ  ZQ  being 

finite sets, the numbers of elements of YX QQ +  and ZQ  are equal. 

Therefore, YX QQ +  and ZQ  have one-to-one correspondence depending 

on their finiteness. 

 

Figure 1. Related objects. 

If YXZ +≥  holds, because of ( ) ,nnnn
YXYXZ +>+≥  it gives a 

contradiction. Therefore, YXZ +<  holds. Also, ,XZ >  ,0>Y  therefore 

02 >+> YXZ  holds. From these inequalities, we should note .0>> EZ  

We should also note 0>−=−=′ YZEXX  and .0>−=−=′ XZEYY  

 

Figure 2. Correspondence relations. 
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Next, see Figure 2. We think about the related objects of YXE ′′,,  as 

well as X, Y, Z. Then we make correspondence of XS  and ZS  by arranging 

their coordinates left justified from their starts 1x  and .1z  Also, we make 

correspondence of YS  and ZS  by arranging their coordinates right justified 

from their ends Yy  and .Zz  Also, we make correspondence of XS ′  and ZS  

by arranging their coordinates left justified from their starts 1x′  and .1z  

Also, we make correspondence of YS ′  and ZS  by arranging their 

coordinates right justified from their ends Yy ′′  and .Zz  Also, we make 

correspondence of ES  and ZS  by arranging their coordinates with 

transitivity rule holding, as ES  and YS  correspond by arranging their 

coordinates left justified from their starts 1e  and ,1y  and ES  and XS  

correspond by arranging their coordinates right justified from their ends Ee  

and .Xx  We should note that XS  and ,XS ′  and YS  and YS ′  have also 

naturally defined correspondence by transitivity rule, ZS  mediating. 

Although we can grasp these correspondence relations geometrically in 

multidimensional Cartesian coordinate space, it is not much helpful for us to 

think the relations logically. On the other hand, when we think the relations 

as in Figure 2, they can be seen easily as geometrical congruence or parallel 

translation of lattice points, and help us think logically and geometrically. 

More details about Figure 2: Each component corresponds to each lattice 

point on EYXYXZ SSSSSS ,,,,, ′′  main lines, and each number of the 

components corresponds to the same number of lattice points on each sub-

line which belongs to and comes out from each lattice point on main lines. 

As the result, Ss ∈  corresponds to n lattice points on sub-lines, but not on 

main lines. It is no problem for us to think each EYXYXZ SSSSSS ,,,,, ′′  

simply in two-dimensional Cartesian coordinate plane. 

This geometric structure can be positioned in design theory of 

combinatorics, especially being related to finite geometry and block design. 
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We think the elements of ZS  which do not correspond to the elements of 

XS  or ,YS  and call them a set ( ) .inZYXZS ∪−  Also, we think the elements 

of ZS  which do not correspond to the elements of ,XS  and call them a set 

( ) .inZXZS −  Also, we think the elements of ZS  which do not correspond to 

the elements of ,YS  and call them a set ( ) .inZYZS −  Then ( ) =− inZYXZS ∪  

( ) ( ) ZYZinZXZ SS in−− ∩  holds. 

We think the elements of ZS  which have at least one component having 

equal to or more than 1 both in 1z  to Xz  and 1+Xz  to ,Zz  and call them a 

set ., inZYXS ′  Also, we think the elements of ZS  which correspond to the 

elements of ,YS ′  and call them a set .inZYS ′  Then ( ) += ′− inZYinZXZ SS  

ZinYXS ′,  holds. As well as this, ( ) inZXYinZXinZYZ SSS ′′− += ,  also 

holds. 

We think the elements of ZS  which have at least one component having 

equal to or more than 1 both in 1z  to Xz ′  and 1+Xz  to ,Zz  and call them a 

set ., inZYXS ′′  We should note that the elements of inZYXS ′′,  can have 

components having equal to or more than 1 in 1+′Xz  to .Xz  

From the above, 

( ) ( ) ( ) inZYZinZXZinZYXZ SSS −−− = ∩∪  

( ) ( ).,, inZXYinZXinZYXinZY SSSS ′′′′ ++= ∩  

Since ( ) ( ) ,,, ∅=+=+ ′′′′′′ inZXinZYXinZYinZXYinZXinZY SSSSSS ∩∩  

( ) ( ) inZXYinZYXinZXYinZXinZYXinZY SSSSSS ′′′′′′ =++ ,,,, ∩∩  

holds. 

If ,, inZYXSs ′′∈  inZYXSs ′∈ ,  and ,, inZXYSs ′∈  therefore inZYXS ′′,  

.,, inZXYinZYX SS ′′⊂ ∩  Oppositely, if ,,, inZXYinZYX SSs ′′∈ ∩  s has at 
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least one component having equal to or more than 1 both in 1z  to Xz ′  and 

1+Xz  to ,Zz  therefore .,,, inZYXinZXYinZYX SSS ′′′′ ⊂∩  Hence inZYXS ′,  

inZYXinZXY SS ′′′ = ,,∩  holds. From this, ( ) inZYXinZYXZ SS ′′− = ,∪  holds. 

Next we think the elements of ZS  which correspond to the elements of 

,XS  and call them a set .XinZS  As well as this, YinZS  and EinZS  are 

defined. In addition to these sets, we define ( ) YinZXinZinZYX SSS ∪∪ =  

and ( ) .YinZXinZinZYX SSS ∩∩ =  

Then 

( ) ( ) ( ( ( ) ))inZYXYinZXinZZinZYXZinZYXZ SSSSSSS ∩∪∪ −+−=−=−  

holds. Since ( ) ,ZinEZinYX SS =∩  

( ) ( ( ))EinZYinZXinZZinZYXZ SSSSS −+−=− ∪  

holds. Therefore ( ( ))EinZYinZXinZZinZYX SSSSS −+−=′′,  holds. 

By the reverse mapping 1−
zg  from ZS  to ,ZQ  we think the reverse 

images of ,XinZS  ,YinZS  ,EinZS  ,, inZYXS ′′  and call them ,XinZQ  ,YinZQ  

,EinZQ  ., inZYXQ ′′  Since zg  is a mapping, 

( ) ( ( ( )))EinZYinZXinZZzinZYXzinZYX SSSSgSgQ −+−== −
′′

−
′′

1
,

1
,  

( ( ))EinZYinZXinZZ QQQQ −+−=  

holds. Therefore, ( ( ))EinZYinZXinZZinZYX QQQQQ −+−=′′,  holds, and 

then EinZYinZXinZZinZYX QQQQQ +−−=′′,  holds. 

Now we should recall that ,nnn
ZYX =+  and YX QQ +  and ZQ  

have one-to-one correspondence, therefore 

EinZYinZXinZYXinZYX QQQQQQ +−−+=′′,  
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holds. We should note that XQ  and XinZQ  are different sets. Also, YQ  and 

YinZQ  are different sets. Also, EQ  and EinZQ  are different sets. But each 

pair of sets has the same number of elements. 

As the result, we can know that 

 inZYXE QQ ′′= ,  (2.0.2) 

is a necessary condition. We should note that EQ  is derived from 

nn
YX +  and inZYXQ ′′,  is derived from .n

Z  In other words, by thinking 

( ) inZYXS ∪  as a standard, the overlapped elements of XS  and YS  are ,ES  

namely ,EQ  and the exceeded elements of ZS  are ,, inZYXS ′′  namely 

., inZYXQ ′′  

Now .n
E EQ =  Next, we think ., inZYXQ ′′  For ,, inZYXSs ′′∈  

( )
!!!

!

21

1

z
z zzz

n
sg ⋅⋅=−

⋯
 holds. And then it can be divided into three parts: 

!!!
!

21 zzzz

n

⋯
 

( ) ( )
( ) ( )

( ) ( ) ( )
.

!!
121

!!!!
121

121
11

111 XXZXX zz

rr

zzzz

rnrn

rnrn

rnn

⋯

⋯

⋯⋯

⋯

⋯

⋯

+′+′

⋅−⋅⋅
⋅−−−⋅⋅−−−

+−=  

Provided that we call the sum of components of EinZS  as r, in other words, 

.1 XX zzr ++= +′ ⋯  

Now inZYXS ′′,  can be divided into the cases of 20 −≤≤ nr  in 

.EinZS  We should note that an element s of inZYXS ′′,  has at least one 

component having equal to or more than 1 both in 1z  to Xz ′  and 1+Xz  to 

,Zz  therefore r cannot be 1−n  and n. For each case of r, it is equivalent to 

the case that the sum of components of inZXS ′  and inZYS ′  has ,rn −  

however, being excluded the two cases that only inZXS ′  has rn −  and only 

inZYS ′  has .rn −  
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Therefore, about ( )∑ −
′′ = ,1

, sgQ zinZYX  we can first take the sum by 

,1 XX zzr ++= +′ ⋯  

( )∑ =⋅−
+′

r

XX
E

zz

rr

!!
121

1⋯

⋯
 

holds. Next, we can take the sum by ,11 ZXX zzzzrn +++++=− +′ ⋯⋯  

( ) ( ) ( ) ( ) ( )∑ −−−
+′

−−−−−=⋅
⋅−−− rnrnrn

ZXX
EYEXEZ

zzzz

rnrn

!!!!
121

11 ⋯⋯

⋯
 

holds. 

It is clear that 
( ) ( )

( ) ( ) ,
121

11
rnC

rnrn

rnn =⋅−−−
+−
⋯

⋯
 therefore 

{( ) ( ) ( ) }∑
−

=

−−−
′′ −−−−−=

2

0

,

n

r

rnrnrnr
rninZYX EYEXEZECQ  

holds. From the above, {( ) }∑
−
=

−−− ′−′−′+′= 2
0

n

r
rnrnrnr

rn
n

YXYXECE  

holds. □ 

The equivalence between two formulas is easy to be proved by 

elementary deformation with binomial theorem as the following, however, it 

is difficult to understand the meaning or the value of the formula without 

demonstration of Theorem 2.1. This is the complementary effectiveness           

of the logical operations in the geometric structures. It gives us strong 

motivation and hints for additional seeking on the formula. 

Theorem 2.2. When we set ,,, EYYEXXZYXE −=′−=′−+=  

{( ) }∑
−

=

−−− ′−′−′+′=⇔=+
2

0

.
n

r

rnrnrnr
rn

nnnn
YXYXECEZYX  

Proof. 

( ) ( ) ( )nnnnnn
EEYEEXEEZYXZ +−−+−−+−=−−=0  
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{( ) ( ) ( ) }∑
=

−−− −−−−−=
n

r

rnrnrnr
rn EYEXEZEC

0

 

( ) ( ) ( ) ( ){ }EYEXEZECEC
n

nn
n

nn −−−−−+−= −
−

1
11  

{( ) ( ) ( ) }∑
−

=

−−− −−−−−+
2

0

n

r

rnrnrnr
rn EYEXEZEC  

( )YXEZnEE
nn −−++−= −1  

{( ) ( ) ( ) }∑
−

=

−−− −−−−−+
2

0

n

r

rnrnrnr
rn EYEXEZEC  

holds. Therefore, {( ) }∑
−
=

−−− ′−′−′+′= 2
0

.
n

r
rnrnrnr

rn
n

YXYXECE  □ 

3. Preparations for Analysis 

Lemma 3.1. When n is a prime number equal to or more than 2, 

( )nE mod0≡  holds. 

Proof. If ( )nE mod0�  holds, then 

{( ) }( ).mod
2

0
nYXYXECEE

rnrnn

r

rnr
rn

n −−−
=

− ′−′−′+′≡≡ ∑  

When ,21 −≤≤ nr  ( )nCrn mod0≡  holds. Therefore, ( )n
YXE ′+′≡  

( )nYX
nn mod′−′−  holds. Regardless of whether ( ),YX ′+′  ,X ′  Y ′  can 

be divided by n or not, ( )nYXYXE mod0≡′−′−′+′≡  holds. This 

contradicts the assumption ( ),mod0 nE �  hence ( )nE mod0≡  holds. □ 

Definition 3.2. For a natural number n, when we call the index by 0≥s  

on the prime factor 2≥p  in prime factorization of n, we define the function 

( ) .snf p =  
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Lemma 3.3. For natural numbers a, b, c, when c can be decomposed by 

summation of a and b, in other words, bac +=  holds, if ( ) 0=af p  and 

( ) 1≥bf p  hold, ( ) 0=cf p  holds. 

Proof. If ( ) 1≥cf p  holds, since ( ) ( ) 10, ≥−==−= bcfafbca pp  

holds. This is a contradiction. Therefore, ( ) 0=cf p  holds. □ 

Lemma 3.4. For natural numbers a, b, c, when c can be decomposed    

by summation of a and b, in other words, bac +=  holds, ( ) ≥cf p  

( ( ) ( ))bfaf pp ,min  holds. 

In addition to it, if ( ) ( ( ) ( ))bfafcf ppp ,min=  holds, ( ( ) ( ))bfaf pp ,max  

( )cf p≥  holds. If ( ) ( ( ) ( ))bfafcf ppp ,min>  holds, then ( ) ( )bfaf pp =  

holds. 

Proof. If ( ) ( ( ) ( ))bfafcf ppp ,min<  holds, then ( ) ≥+ baf p  

( ( ) ( )) ( )cfbfaf ppp >,min  holds. This contradicts ( ) ( ).cfbaf pp =+  

Therefore, ( ) ( ( ) ( ))bfafcf ppp ,min≥  holds. 

If ( ) ( ( ) ( ))bfafcf ppp ,min=  holds, then 

( ( ) ( )) ( ( ) ( )) ( )cfbfafbfaf ppppp =≥ ,min,max  

holds. Therefore, ( ( ) ( )) ( )cfbfaf ppp ≥,max  holds. 

If ( ) ( ( ) ( ))bfafcf ppp ,min>  and ( ) ( )bfaf pp ≠  hold, especially 

( ) ( )bfaf pp ≠  and because of Lemma 3.3, 

( ( ) ( )) ( ( ) ( )) 0
,min,min

=













+

bfafbfafp
pppp p

b

p

a
f  

holds. Now 

( ( ) ( ))
( ( ) ( )) ( ( ) ( )) 













+⋅=+=

bfafbfaf

bfaf

pppp

pp

p

b

p

a
pbac

,min,min

,min
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holds. Therefore, 

( ) ( ( ( ) ( )) )bfaf
pp

pppfcf
,min=  

( ( ) ( )) ( ( ) ( )) ( ( ) ( ))bfaf
p

b

p

a
f ppbfafbfafp

pppp
,min

,min,min
=














++  

holds. This contradicts ( ) ( ( ) ( )).,min bfafcf ppp >  Therefore, if ( ) >cf p  

( ( ) ( ))bfaf pp ,min  holds, ( ) ( )bfaf pp =  holds. 

Lemma 3.5. For natural numbers a, b, c, when c can be decomposed by 

summation of a and b, in other words, bac +=  holds, if ( ) ( )bfaf pp ≠  

holds, ( ) ( ( ) ( ))bfafcf ppp ,min=  holds. 

Proof. From Lemma 3.4, ( ) ( ( ) ( ))bfafcf ppp ,min≥  holds. If ( ) >cf p  

( ( ) ( ))bfaf pp ,min  holds, ( ) ( )bfaf pp =  holds, however, this contradicts 

( ) ( ).bfaf pp ≠  Therefore, ( ) ( ( ) ( ))bfafcf ppp ,min=  holds. □ 

Theorem 3.6. For any decomposition of a natural number a by addition, 

if x denotes its each term, in other words, ∑= xa  holds, and then 

( )
( ) ( ) 















= ∑

≥ xfaf

pp

pp

xfaf  

holds. 

Proof. First, we set a natural number x′  and a term y of the 

decomposition as 

( ) ( )
∑

≥
=′

xfaf pp

xx  

and ( ) ( ).yfaf pp <  
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Next, we assume ( ) ( ).xfaf pp ′≠  Since by Lemma 3.5, in the case  

( ) ( )yfxf pp ≠′  holds, ( ) ( ( ) ( ))yfxfyxf ppp ,min ′=+′  holds. Since ( ) ≠af p  

( )xf p ′  and ( ) ( ),yfaf pp <  ( ) ( ( ) ( ))yfxfaf ppp ,min ′≠  holds. Therefore, 

( ) ( )yxfaf pp +′≠  holds. 

On the other hand, in the case ( ) ( )yfxf pp =′  holds, ( ) ( ) =< yfaf pp  

( ( ) ( ))yfxf pp ,min ′  and because of Lemma 3.4, ( ( ) ( )) ≤′ yfxf pp ,min  

( )yxf p +′  holds. Therefore, ( ) ( )yxfaf pp +′≠  also holds. In short, if 

( ) ( )xfaf pp ′≠  holds, then ( ) ( )yxfaf pp +′≠  holds. 

Now we unite yx +′  and reset x′  to denote the united term, and also 

reset y to another term which satisfies ( ) ( ).yfaf pp <  Since 

( ) ( )xfaf pp ′≠  and ( ) ( )yfaf pp <  still hold from the above, we can 

rethink the same operation as well. This operation can be repeated until y 

becomes empty. Therefore, ( ) 





≠ ∑ xfaf pp  holds. However, this 

contradicts ∑= .xa  Therefore, 

( )
( ) ( ) 















= ∑

≥ xfaf

pp

pp

xfaf  

holds. □ 

Lemma 3.7. For any decomposition of a natural number a by addition, 

if z is the only one term which has the minimum index ( )zf p  for the prime 

factor p, 

( ) ( )zfaf pp =  

holds. 
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Proof. First, we set a term y of the decomposition as y is the different 

term from z. Since Lemma 3.5 holds, ( ) ( ( ) ( ))zfyfzyf ppp ,min=+  

( )zf p=  holds. 

Now we unite zy +  and reset z to denote the united term, and also reset 

y to another term which is the different term from z. Since ( )zf p  is still          

the minimum index from the above, we can rethink the same operation          

as well. This operation can be repeated until y becomes empty. Therefore, 

( ) ( )zfaf pp =  holds. □ 

We should note that, in Lemma 3.7, for all the terms y which are 

different from the term z, ( ) ( ) ( )afzfyf ppp =>  holds. We do not use 

Theorem 3.6 in this paper, but the theorem will help us understand Lemma 

3.7, because Lemma 3.7 is the special case of Theorem 3.6. Lemma 3.7 is 

the very important proposition in this paper, when it applies to the formula 

(2.0.1) in the next theorem. We will feel that the difficulty of finding 

solution of Fermat Wiles Theorem comes from this Lemma 3.7, which is 

derived from the fundamental proposition Lemma 3.3. 

4. Leading the Condition 

Theorem 4.1. When n is a prime number equal to or more than 2, for 

any prime  factor ,Xp ′|∀  

( ) ( ),XfEnfpn pp ′=⇒≠  

( ) ( ) 1+′=⇒= XfEnfpn pp  

hold. 

Proof. Since 

( ) ∑
−

=′

−−′−−′
′−

−−− ′−′−′′=′−′−′+′
rn

r

rnrnrrnr
rrn

rnrnrn
YXYXCYXYX

0

 

∑
−−

=′

′−−′
′− ′′=

1

1

rn

r

rrnr
rrn YXC  
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holds, with putting this formula into the formula (2.0.1), 

 ∑ ∑
−

=

−−

=′

′−−′
′−













′′=
2

0

1

1

n

r

rn

r

rrnr
rrn

r
rn

n
YXCECE  (4.0.3) 

holds. Therefore, n
EYX |′′  holds. Since ,, n

EpXp |′|  Ep |  holds. 

Now if nnn
ZYX =+  has the set of the solutions ( )ZYX ,,  and X, Y 

have a common prime factor q, then Z also has a prime factor q. Therefore, 

even if each term of the formula has been divided by ,n
q  the formula 

( ) ( ) ( )nnn
qZqYqX =+  holds again. Repeating this operation until 

( )ZYX ,,  has no common prime factor, we can find the set of the solution 

( )ZYX ,,  entries which are coprime numbers. Therefore, for seeking the 

existence of the solution of ,nnn
ZYX =+  it is enough to discuss about 

only the case of the solution ( )ZYX ,,  with coprime components. From 

now, we postulate this condition in this paper. 

Next, for ,| Xp ′∀  Ep |  and EXX +′=  hold, therefore Xp |  holds. It 

is also said that for ,|Yp ′′∀  Ep |′  and EYY +′=  hold, therefore Yp |′  

holds. In addition, X, Y are coprime numbers, therefore pp ′≠  and YX ′′,  

are also coprime numbers. Hence ( ) 0=′Yf p  holds. 

Now from the formula (4.0.3), 

 ∑ ∑
−

=

−−

=′

′−−′
′− ′′=

2

0

1

1

n

r

rn

r

rrnr
rrn

r
rn

n
YXCECE  (4.0.4) 

holds. When we think about all the terms rrnrr
rrrnn YXECC

′−−′
′− ′′  of the 

formula above, we can notice that the term ,1−′′ n
YXn  which is the term of 

( ) ( ),1,0, =′rr  has the special value. Here D denotes the other term of 

,rrnrr
rrrnn YXECC

′−−′
′− ′′  but not .1−′′ n

YXn  
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In the case of ,pn ≠  since ( ) 0=′Yf p  holds, ( ) ( )1−′′=′ n
pp YXnfXf  

holds. D always includes ( )1≥′ rXE  or ( ),22 ≥′′ rX  therefore 

( ) ( )XEfDf pp ′≥    or   ( ) ( )2
XfDf pp ′≥  

holds. Since ,Ep |  

( ) ( )XfXEf pp ′>′    and   ( ) ( )XfXf pp ′>′2  

hold. From all of the above, ( ) ( )1−′′> n
pp YXnfDf  holds. Therefore, for 

the right side of the formula (4.0.4), which is the decomposition of the 

natural number n
E  by addition, the term 1−′′ n

YXn  is the only one term 

which has the minimum index ( )1−′′ n
p YXnf  for the prime factor p. By 

Lemma 3.7, 

( ) ( ) ( ) ( )XfYXnfEfEnf p
n

p
n

pp ′=′′== −1  

holds. 

In the case of ,pn =  since ( ) 0=′Yf p  holds, ( ) ( )1−′′=′ n
pp YXnfXnf  

holds. D always includes ( )1≥′ rXnE  or ( ),202 ≥′∧=′ rrXn  therefore 

( ) ( )XnEfDf pp ′≥    or   ( ) ( )2
XnfDf pp ′≥  

holds. Since ,Ep |  

( ) ( )XnfXnEf pp ′>′    and   ( ) ( )XnfXnf pp ′>′2  

hold. From all of the above, ( ) ( )1−′′> n
pp YXnfDf  holds. Therefore, for 

the right side of the formula (4.0.4), which is the decomposition of the 

natural number n
E  by addition, the term 1−′′ n

YXn  is the only one term 

which has the minimum index ( )1−′′ n
p YXnf  for the prime factor p. By 

Lemma 3.7, 
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( ) ( ) ( ) ( ) ( ) 11 +′=′=′′== −
XfXnfYXnfEfEfn pp

n
p

n
pp  

holds. 

We should note that in the case of ,2=n  D denotes no term, but from 

the formula (4.0.4), YXE ′′= 22  holds. Therefore, 

( ) ( ) ( ) ( ),222 2
XfYXfEfEfp pppp ′=′′==⇒≠  

( ) ( ) ( ) ( ) 1222 2 +′=′′==⇒= XfYXfEfEfp pppp  

also hold. 

 

Figure 3. Primes’ space. 

 □ 

Figure 3 is the space which displays the relations between the prime 

factorizations of .,,,,, n
EEYXYX ′′  Primes are arranged in ‘a right way’ 

on its plane, and the vertical axis shows their indexes. Provided that the case 

of ,pn =  and especially ( ) ,12 2 =∧= Efn  is excluded from the figure. 

Theorem 4.2. When n is a prime number equal to or more than 2, 

( ) ( ) ,,gcd EXEXXn
n −=⇒|¬  
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( )
EX

n

EX
Xn

n

−=⇒| ,gcd
 

hold. These also hold for Y. 

Proof. For any prime factor ,Xp ′|∀  as referred in the proof of  

Theorem 4.1, Ep |  holds. Since ,EXX +′=  Xp |  also holds. Therefore, 

( )EXp ,gcd|  holds. 

Since ,EXX −=′  ( ) XEX ′|,gcd  holds. Therefore, for any prime 

factor ( ),,gcd EXq |∀  Xq ′|  holds. Now we define a radical of a natural 

number by 

( ) ∏
′|

=′
Xp

pXrad .:  

From the above, we have known that ( ) ( )( )EXradXrad ,gcd=′  holds. 

In the case ( ),Xn |¬  since ,Xp |  pn ≠  holds. Therefore, from 

Theorem 4.1, ( ) ( )XfEfn pp ′=  holds. Since 2≥n  and ( ) ,1≥Ef p  

( ) ( )XfEf pp ′<  holds. Therefore, we can apply Lemma 3.7 to ,EXX +′=  

and then ( ) ( )EfXf pp =  holds. Therefore, 

( )( ) ( ( ( ) ( )) ) ( ( ) ) ( )
( )

,,gcd
,min

n

Xf
EfpfpfEXf

p
p

Ef
p

EfXf
pp

ppp
′

====  

( )( ) ( )XfEXfn pp ′=,gcd  

hold. Since ( )( ) ( )XradEXrad ′=,gcd  and the above, when ,1≠′X  

( ) EXXEX
n −=′=,gcd  holds. Even if ,1=′X  obviously it also holds. 

In the case ,Xn |  we can apply the same discussion to .pn ≠  It means 

that ( )( ) ( )XfEXfn pp ′=,gcd  holds. Therefore, we need to think about 

only the case .pn =  We should note that since Lemma 3.1 and 

,EXX −=′  Xn ′|  holds. Therefore, there inevitably exists Xp ′|∃  which 

satisfies .pn =  From Theorem 4.1, ( ) ( ) 1+′= XfEfn pp  holds. 
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When ,3≥n  because of ( ) ,1≥Ef p  ( ) ( ) ( )XfEnfEf ppp ′=−< 1  

holds. When 2=n  and ( ) ,22 ≥Ef  ( ) ( ) ( )XfEfEf ′=−< 222 12  holds. 

Therefore, in the two cases, we can apply Lemma 3.7 to ,EXX +′=  and 

then ( ) ( )EfXf pp =  holds. Therefore, 

( )( ) ( ( ( ) ( )) ) ( ( ) ) ( )
( )

,
1

,gcd
,min

n

Xf
EfpfpfEXf

p
p

Ef
p

EfXf
pp

ppp
+′

====  

( )( ) ( )XfEXfn pp ′=− 1,gcd  

hold. 

When 2=n  and ( ) ,12 =Ef  ( ) ( ) 112 22 =−=′ EfXf  holds. Since 

,EXX +′=  ( ) ( ) 122 ≥+′= EXfXf  holds, and then ( ) ( )EfXf 22 ≥  

holds. Therefore, 

( )( ) ( ( ) ( )( )) ( ( ) ) ( ) ( )
,

2
1

22,gcd 2
22

,min
22

222 +′
==== Xf

EfffEXf
EfEfXf  

( )( ) ( )XfEXf ′=− 22 1,gcd2  

also hold. 

Since ( )( ) ( ),,gcd XradEXrad ′=  from the above 

( )
EXX

n

EX
n

−=′=,gcd
 

holds. Provided that 1≠′X  holds, because of ,EX >  ,Xn |  and Lemma 

3.1. The same discussion applies to Y. □ 

5. Conclusions 

Putting two conditions of X and Y to one, from this paper, we have a new 

question whether there exist the solutions for natural numbers ( ),,, EYX  

which satisfy that X and Y are relatively prime, E is a multiple of n, and 

( ) ( ) ( )( )XYnProvidedEYEYEXEX
nn |¬−=∧−= ,gcd,gcd  
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or 

( ) ( ) ( ) ( )( ).,gcd
,gcd

YnXnProvidedEYEYEX
n

EX n
n

|¬∧|−=∧−=  

At least ( ) ( )210,553,335,3,,, =EYXn  satisfies the condition above. 

At the last, when we put the condition into ,nnn
ZYX =+  

( ( ) ) ( ( ) ) ( ( ) ( ) )nnnnnnn
EEYEXEEYEEX ++=+++ ,gcd,gcd,gcd,gcd  

( )( )XYnProvided |¬  

or 

( ) ( ( ) ) ( ) ( )
n

n
n

nn

nn

EEY
n

EX
EEYE

n

EX










++=++










+ ,gcd

,gcd
,gcd

,gcd
 

( ( ) ( ))YnXnProvided |¬∧|  

holds. It means that we can make ,nnn
ZYX =+  the formula of Fermat 

Wiles Theorem be more strict one in this paper. In addition, it is interesting 

that this condition can be satisfied at least in simple 2=n  with Pythagorean 

triples. However, Pythagorean triples seem to need ( ).2 X|  
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