素数が無限にあることの証明

素数が無限にあることを簡潔に証明する。算術の基本定理を用いた証明と、それを用いない証明の二つを示す。【証明】
仮に素数が有限個しかないとすると、すべての素数をXとして、それらを掛けた数をxとする。x+1は少なくとも一つの素数で割られる(後で証明する)ので、その素数をpとする、、、つづく